В течение 2017 года все четыре ведущие космические державы мира (Россия, США, Китай и Индия) заявили о намерениях наладить добычу изотопа гелий-3 на Луне. Как известно, это – наиболее перспективный материал для получения энергии в термоядерных реакторах, массовое внедрение которых может произойти уже в 2040-х годах.
Не исключено, что в ближайшие годы мы станем свидетелями Лунной гонки-2, победитель (или победители) которой получит в свои руки практически неисчерпаемый источник энергии. Это в свою очередь, позволит человечеству выйти на качественно новый технологический уклад, о параметрах которого мы можем только догадываться.
Что такое гелий-3?
Из школьного курса физики мы помним, что атомная масса гелия равняется четырем и этот элемент является инертным газом. Его проблематично использовать в каких-либо химических реакциях, тем более с выделением энергии. Совсем другое дело - изотоп гелия с атомной массой 3. Он способен входить в термоядерную реакцию с дейтерием (изотопом водорода с атомной массой 2) в результате чего образуется гигантская энергия за счет синтеза обычного гелия-4 с выделением протона (3Не + D → 4Не + p + энергия). Подобным образом из всего одного грамма гелия-3 можно получить такую же энергию, как при сжигании 15-ти тонн нефти.
Так происходит термоядерная реакция с участием гелия-3 и дейтерия
Тонны гелия-3 хватит для энерговыделения на уровне 10 ГВт в течение года. Таким образом, чтобы закрыть все сегодняшние энергопотребности России, ежегодно понадобится 20 тонн гелия-3, а для всего человечества потребуется примерно 200 тонн данного изотопа в год. При этом отпадет необходимость жечь нефть и газ, запасы которых не безграничны, по последним оценкам разведанных запасов углеводородов - человечеству хватит всего на полвека. Не нужно будет эксплуатировать и достаточно опасные АЭС, что после Чернобыля и Фукусимы приобрело особую актуальность.
Несмотря на вновь открываемые месторождения углеводородов, большинству стран их хватит всего лишь на полвека
Где взять гелий-3?
При современном развитии технологий единственным реально доступным источником этого элемента является поверхность Луны. Сам по себе гелий-3 образуется в недрах звезд (например, нашего Солнца) в результате соединения двух атомов водорода.
При этом основным продуктом данной реакции является обычный гелий-4, а изотоп-3 образуется в малых количествах. Часть его выносится солнечным ветром и равномерно распределяется по планетной системе.
Возможно, примерно так будет выглядеть рабочий поселок шахтеров-добытчиков гелия-3 на Луне
На Землю гелий-3 практически не выпадает, поскольку его атомы отклоняются магнитным полем нашей планеты. Зато на планетах, у которых такое поле отсутствует, элемент осаждается в верхних слоях грунта и постепенно накапливается. Ближайшим к Земле небесным телом, у которого отсутствует магнитное поле, является Луна, поэтому именно здесь сосредоточены доступные человечеству запасы этого ценного энергоносителя.
Еще в 1994 г. учеными была составлена карта прогнозных запасов гелия-3 в лунном реголите, созданная на основе исследований, проведенных космическим аппаратом «Клементина»
Подтверждением тому служат не только теоретические выкладки, но и результаты эмпирических исследований. Во всех пробах лунного грунта, доставленных на Землю, был обнаружен гелий-3 в относительно высоких концентрациях. В среднем - на 100 тонн реголита приходится 1 гр. данного энергоизотопа.
Таким образом, чтобы извлечь вышеупомянутые 20 тонн гелия-3 для полного удовлетворения годовых энергопотребностей РФ, понадобится «перелопатить» 2 000 млн. тонн лунного грунта.
Физически это соответствует участку на Луне размерами 20х20 км с глубиной карьера 3 м. Задача по организации столь масштабной добычи - достаточно сложная, но вполне решаемая, уверены современные инженеры. Судя по всему, более трудной и дорогостоящей проблемой станет доставка десятков тонн топлива для теромоядерных печей на Землю.
Для добычи гелия-3 понадобится не только его получить, но и доставить на Землю
Чего не хватает человечеству для гелиевой энергореволюции?
Для развития на Земле полноценной термоядерной энергетики на базе гелия-3 людям предстоит решить три основных задачи.
1. Создание надежных и мощных средств доставки грузов по маршруту Земля-Луна и обратно.
2. Возведение лунных баз и комплексов по добыче гелия-3, которое сопряжено с множеством технологических проблем.
3. Строительство собственно термоядерных электростанций на Земле, для чего также предстоит преодолеть определенные технологические барьеры.
К решению первой задачи человечество придвинулось практически вплотную. Все четыре страны, участвующие в Лунной гонке-2 плюс Европейский Союз, уже разработали или разрабатывают ракеты тяжелого класса, способны забрасывать тонны груза на лунную орбиту. Например, к 2027 г. в России запланирована реализация «в железе» ракеты-носителя «Ангара-А5В», которая будет способна доставить к Луне не менее 10 тонн полезного груза. С обратной транспортировкой будет попроще, поскольку сила притяжения Луны в 6 раз меньше земной, но здесь проблемой будет топливо. Его придется либо завозить с Земли, либо вырабатывать на поверхности нашего спутника.
Наиболее перспективной «лунной» ракетой России является «Ангара» в модификации А5В, а у американцев – «Falcon Heavy», которая, правда еще только разрабатывается
Гораздо более серьезной является вторая задача, поскольку помимо организации собственно добычи гелия-3 из реголита инженерам придется создать надежные лунные базы с системами жизнеобеспечения для шахтеров будущего. В этом сильно помогут технологии, наработанные благодаря многолетней эксплуатации орбитальных станций, прежде всего МКС и «Мир». Как в России, так и в других странах сегодня активно проектируются лунные базы и, пожалуй, наша страна на сегодня имеет максимум технологий для реального воплощения подобных проектов.
В Америке уже разработан эскизный проект передвижной установки по добыче гелия-3
Что касается третьей проблемы, то работы по созданию термоядерных реакторов идут на Земле последние три десятилетия. Основной технологической трудностью здесь является проблема удержания высокотемпературной плазмы (необходимой для «розжига» термоядерного синтеза) в т.н. «магнитных ловушках».
Этот вопрос уже решен для реакторов, работающих на принципе соединения дейтерия и трития (D + T = 4He + n + энергия). Для поддержания такой реакции достаточно температуры в 100 млн. градусов.
Однако подобные реакторы никогда не станут массовыми, поскольку они чрезвычайно радиоактивны. Для запуска реакции с участием гелия-3 и дейтерия понадобятся температуры в 300-700 млн. градусов. Пока такую плазму не удается длительно удерживать в магнитных ловушках, но возможно к прорыву в этой области приведет запуск Международного экспериментального термоядерного реактора (ITER), который сейчас строится во Франции и будет введен в эксплуатацию к 2025 г.
Плазма в международном реакторе ΙΤΕR будет разогреваться до 150 млн. градусов, чего достаточно для соединения дейтерия с тритием, для работы с гелием-3 понадобятся, как минимум, в 2 раза большие показатели
Таким образом, десятилетие между 2030-2040 гг. имеет все шансы оказаться стартовым в деле развития энергетики на базе гелия-3, поскольку к этому времени, судя по всему, будут преодолены технологические препятствия, указанные выше. Соответственно, останется найти деньги на реализацию энергопроекта, который способен перевести человечество в эру чрезвычайно дешевой (почти дармовой) энергии со всеми вытекающими последствиями, как для экономики, так и качества жизни каждого человека.
Читайте еще на тему освоения космоса: Терраформирование и колонизация Марса: проекты и перспективы